Stochastic Cooling for RHIC

Team: M. Blaskiewicz, J.M. Brennan, J. Wei, RF and beam components
groups
Goal: To provide microwave stochastic cooling at a level which will improve

integrated luminosity by a significant factor (maybe 2) within the next few
years. Confine beam halo when electron cooling arrives.
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From J.M. Brennan’s MAC presentation

Bunched-beam Stochastic Cooling

« What would be required,

—Cooling time would have to be commensurate with de-bunching time,
~ few hours

—Cool only large AP particles (halo cooling)

» Consider coasting beam theory (full bucket)
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«  Why wasn’t stochastic cooling in the base line design for RHIC?

« High frequency bunched-beam stochastic cooling is required
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Highlights from last year
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Figure 2: High and low frequency gold spectra with a span
29 MHz and a resolution bandwidth of 100 kHz. The
generic features of the spectrum do not change between
baseband and 5 GHz.
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Figure 1: Gold Schottky spectra with (solid) and without
(dashed) the one turn delay notch filter, fo = 4.77 GIl=z.
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Figure 3: High resolution proton Schottky spectrum.
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Voltage considerations

For 4-8 GHz need 1 to 3.6 kV rms, large by stochastic cooling standards
Bunches are 7, =5 ns long spaced by at least 100 ns

The value of the kicker voltage matters only when the bunch is present

V()=) A, sin(2mt/t,+86,)
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Voltage and Power part 2

Take 21 cavities, 4-8 GHz bandwidth 40 Watts/cavity (10 K each)
R/Q=100€2, 10 MHz FWHP bandwidth

gives 1.2 kV rms per cavity, or 5.6 kV total

Cavity drive signal needs to be roughly sinusoidal for R (not R/Q) to matter
Suppose S, (¢) is the drive signal for a broad band kicker (like a resistor).

Periodically extend 1
S()=) Sy(t—kz,)
k=0

Split and pass through 100 MHz filters, centered on cavity resonance, before
power amps. In this way each amplifier sees a piecewise sinusoidal input.

The delay lines are being built with a 16 way fiber optic splitter, fiber optic
delay lines, and a fiber optic combiner.

We are primarily interested in confinement within the bucket ,
so we focus on halo particles
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Low Level Drive

For cooling we need a force proportional to the energy error.
Without a specially designed lattice, an expert (D. McGinnis) suggested

we use filter cooling. 1 | , | | | | ,
one turn delay palmer
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The delay lines are done in fiber optics.
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voltage

2 ps time, 20% amp delay line error; 2 MHz frequency error
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Plan for this run

* Installing 7-8 GHz and 4-5 GHz kickers in yellow 4 o’clock

e 16 channel delay line and full turn delays are in process

* Have 5 amplifiers in hand and more on order

e For full comparison with Au beams need 1.e9 ions in a witness bunch

*  We should get a clean cooling signal albeit at about %2 the expected rate
for the full system.

* Required voltage/cavity very similar to that needed for Au.

e All this assumes rebucketed beam. An experiment without rebucketed
beam might be worthwhile.
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